The triples of geometric permutations for families of disjoint translates

نویسندگان

  • Andrei Asinowski
  • Andreas Holmsen
  • Meir Katchalski
چکیده

A line meeting a family of pairwise disjoint convex sets induces two permutations of the sets. This pair of permutations is called a geometric permutation. We characterize the possible triples of geometric permutations for a family of disjoint translates in the plane. Together with earlier studies of geometric permutations this provides a complete characterization of realizable geometric permutations for disjoint translates. c © 2001 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden Families of Geometric Permutations in R

A geometric permutation induced by a transversal line of a finite family F of disjoint convex sets in Rd is the order in which the transversal meets the members of the family. We prove that for each natural k, each family of k permutations is realizable (as a family of geometric permutations of some F ) in Rd for d ≥ 2k − 1, but there is a family of k permutations which is non-realizable in Rd ...

متن کامل

The Harmony of Spheres

Let F = {X1, . . . , Xn} be a family of disjoint compact convex sets in R. An oriented straight line ` that intersects every Xi is called a (line) transversal to F . A transversal naturally induces an ordering of the elements of F , this ordering, together with its reverse (which is induced by the same line with opposite orientation), is called a geometric permutation. Geometric transversal the...

متن کامل

Sharp Bounds on Geometric Permutations of Pairwise Disjoint Balls in IRd

(i) We prove that the maximum number of geometric permutations, induced by line transversals to a collection of n pairwise disjoint balls in IR d , is (n d?1). This improves substantially the general upper bound of O(n 2d?2) given in 11]. (ii) We show that the maximum number of geometric permutations of a suuciently large collection of pairwise disjoint unit discs in the plane is 2, improving a...

متن کامل

Geometric permutations of disjoint unit spheres

We show that a set of n disjoint unit spheres in R admits at most two distinct geometric permutations if n ≥ 9, and at most three if 3 ≤ n ≤ 8. This result improves a Helly-type theorem on line transversals for disjoint unit spheres in R: if any subset of size 18 of a family of such spheres admits a line transversal, then there is a line transversal for the entire family.

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 241  شماره 

صفحات  -

تاریخ انتشار 2001